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Abstract. 

A growing number of distributed systems and network applications are deployed atop the 
Internet. Designers of such systems turn increasingly to adaptive mechanisms that measure 
network delays and alter processing according to conditions. In this paper, we argue that 
understanding not only the statistical properties of Internet traffic, but also the causes of those 
properties, can help designers of network-adaptive distributed systems to produce more effective 
measurement and adaptation strategies. We use simulation to illustrate effects on network traffic 
of some key factors: characteristics of offered traffic, end-to-end congestion-control mechanisms, 
link capacity, and network size. We apply wavelet-based analysis to illustrate the propagation of 
congestion over various timescales. In general, we find that network size has greater influence 
than other factors on network congestion. Our findings suggest that distributed systems should 
adapt to network conditions at a variable pace, rather than a constant pace. 
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I. Introduction 
 

To tune performance of distributed systems running over the global Internet, understanding 

Internet traffic characteristics should prove extremely useful. The Internet itself is essentially a 

big distributed system, where transport-layer traffic flows adapt themselves to avoid congestion 

in a self-organized, distributed manner. Still, diverse applications coexisting in the open Internet 

environment, lead to highly variable user demands and unpredictable resource availability. 

Some developing distributed applications attempt to adapt themselves to Internet congestion 

dynamically in order to achieve desired temporal behavior in the unpredictable Internet 

environment. However, design and development of such network-adaptive distributed systems 

remain in an early stage. Research about the implication of Internet traffic characteristics for such 

distributed systems should prove timely and useful. Overlay networks, which are self-organized 

distributed systems created on top of the Internet, often need to monitor dynamic network 

conditions to achieve effective and stable application performance. Overlay networks have been 

designed to enable distributed applications to avoid congested paths, to support multimedia 

conferencing applications, and to manage caches for Web content delivery [1-3]. For example, 

Chu and colleagues [1] describe an application for multicast audio-video conferencing that can be 

transmitted across the Internet using a TCP (Transmission-Control Protocol) Friendly Rate 

Control (TFRC) protocol [4] in a self-organizing overlay network. The overlay network must 

adapt to Internet congestion by tracking available link bandwidth at an appropriate timescale. 

However, as Chu and colleagues state, there is an open issue associated with determining the 

most effective timescale for measurement and adaptation. Further studies, leading to a rigorous 

understanding of the characteristics of Internet congestion, may help resolve the issue. 

Usually, successful adaptation based on monitoring at a specific timescale requires a strong 

correlation in measured conditions at that time granularity. Weaker correlation leads to larger 

errors in prediction, and thus less reliable feedback, since conditions fluctuate more rapidly than 

the time measurement interval. Some network protocols and algorithms use measurements of 
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network state to guide future actions. For example, the transmission-control protocol (TCP) uses 

round-trip delay measurements to estimate when unacknowledged packets should be 

retransmitted, and selected admission control algorithms use measures of past load to predict 

future load [5]. These protocols and algorithms do not explicitly identify whether the relevant 

measures of network state vary sufficiently slowly to have a strong correlation over the timescales 

of interest for the intended controls.  

Fortunately, network researchers have discovered evidence that time-series of measured 

Internet traffic usually exhibit long-range dependence (LRD) [6-8], defined as slowly decaying 

auto-correlation over a wide range of timescales. However, the LRD found in Internet traffic is 

believed to arise from highly variable user traffic, often represented with so-called heavy-tailed 

statistical distributions, and from TCP adaptation to network congestion [9]. For distributed 

applications that use TCP, the most prevalent transport protocol, adaptation to network 

congestion is built-in using specific algorithms; thus, network-adaptive applications have little to 

gain when operating over TCP. Similarly, since the Internet is a global shared resource, there is 

little that designers of network-adaptive applications can do to control the behavior of the many 

users sending traffic over the Internet for a wide variety of independent applications. Given these 

factors, designers of network-adaptive distributed systems usually choose to operate applications 

over a transport protocol other than TCP, and then to measure performance arising from the 

combined effects of TCP congestion adaptation (a factor in most current network applications) 

and global user behavior (which tends to generate heavy-tailed traffic patterns). Using such 

measurements, the end points in network-adaptive distributed systems adjust themselves to co-

exist with their perceived operating environment. But over what timescales should network-

adaptive distributed systems measure and adapt to global conditions? 

In this paper, we analyze qualitatively the correlation structure of network traffic, which 

might have some relationship to the design of system-wide adaptation mechanisms intended to 

meet quality-of-service requirements in distributed systems. We believe that understanding the 
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properties and causes of LRD in Internet traffic can help designers of network-adaptive 

distributed systems to produce more effective measurement and adaptation strategies. Where 

network traffic exhibits strong correlation over specific timescales, then monitoring and feedback 

control actions taken at those timescales should prove effective. Further, where strong correlation 

exists over larger timescales, network adaptation can occur more slowly, yet remain effective for 

a large distributed system. In such cases, it could also prove possible to achieve effective 

adaptation with lower measurement overhead.  

We use simulation to illustrate effects on network congestion of some key factors: 

characteristics of offered traffic, end-to-end congestion-control mechanisms, link capacity, and 

network size. We apply wavelet-based analysis [10] to illustrate propagation of congestion over 

various timescales. We find that network size has a significant influence on the correlation 

structure of network traffic. Specifically, in a large network, correlation in congestion extends 

over a wide range of timescales, which implies that large network-adaptive, distributed 

applications executing over the Internet can rely on a robust and pronounced correlation structure 

to permit coarser-grained adjustments to global conditions. We also find that variations in load 

and available capacity, when occurring locally near application end points, can increase and 

decrease coupling with the global correlation structure. This suggests that network-adaptive 

distributed applications should vary the rate of adjustments rather than rely on a fixed adjustment 

rate.  

The remainder of the paper is structured as three sections. Section II discusses our modeling 

and analysis approaches. We describe our representation of network structure, ON/OFF traffic 

sources, congestion-control algorithms, and routing. We also outline the wavelet-based analysis 

method. In Section III, we delineate our experiments and show related simulation results. Our 

experiments aim to distinguish among the effects of user behavior, transmission dynamics, and 

network structure. We present concluding remarks in Section IV. 
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II. Experimental Method 

Simulating and understanding behaviors in a large-scale network present difficult challenges, 

arising from the need to search a large parameter space. However, if we restrict our simulation 

appropriately, then we can perhaps find a tractable approach that helps us to develop intuition and 

insight. We adopt a homogeneous topology that enables us to simulate a large-scale network, 

while varying selected factors: link capacity, traffic generation, transport mechanism, and 

network size. Using such a simulation, we can gauge change in a measure of interest when 

varying each factor, one by one. 

A. Modeling. To provide a holistic view of network traffic, a model should encompass the 

variability and complexity inherent in a hierarchical network topology, including the effects of 

network-host interactions and the effects of protocol regimes and network controls. Though we 

restrict our attention to qualitative aspects of the correlation structure in network traffic, our 

model must still capture some important details of network structure, ON/OFF sources, 

congestion-control algorithms, and routing.  

Network Structure. The network structure of 

our model is a two-tier topology: the upper tier 

for routers and the lower tier for hosts, as shown 

in Figure 1. In the upper tier, routers connect 

each other in a regular way to form a mesh-like 

(grid) network. An equal number of sources (ns) 

attach to each router. Other hosts attached to the router take the role of receivers. When a source 

initiates a connection (ON period), a destination routing domain (i.e., router) is chosen randomly, 

and an available receiving host is assigned. The destination router must differ from the source 

router. A receiver is released when the source ends the connection. We limit the number of 

receivers for each routing domain to double the number of sources (2ns).  If a source selects a 

 

Figure 1: Model network structure
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Our model operates at the packet level. To store and forward packets traveling between 

source-destination pairs, each router maintains a queue of limited length (50 packets), where 

arriving packets are stored until they can be processed: first-in, first-out. Packet movement occurs 

at discrete simulation time-steps. During each time-step, each source host can send at most one 

packet to its directly attached router. However, each router can forward multiple packets (nl) 
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during each time-step. This forms a natural difference between two link types in the two tiers: the 

link capacity in the host tier is one packet-per-time-step (ppts), while the link capacity in the 

routing tier is nl  ppts. Figure 2 provides a schematic diagram of the parallel operations of sources, 

routers, and receivers at each time step. 

We consider three parameters of network structure: number of sources (ns), link capacity of 

the routing tier (nl), and network size (L2), where L is the number of routers along one side of the 

grid. In Figure 1, for example, L = 3 and ns = 5; thus the network contains 9 routers and up to 45 

simultaneously active connections. (Figure 1 omits receivers.) 

Traffic Sources. Each source models traffic generation as an ON/OFF process, which 

alternates between wake and sleep periods. When awake, a source may send, subject to any 

restrictions imposed by congestion-control algorithms, one packet at each time-step to the 

source’s first-hop router. The packet will be placed at the end of the router’s queue. At the 

beginning of each “ON” period, a source randomly selects (uniform distribution) another routing 

domain (with an available destination host) as its sink. Each packet generated by the source 

during the same “ON” period has the same destination address. When sleeping, the source does 

not generate new packets at each time-step. ON/OFF sources provide a convenient model of user 

behavior. 

We modulate the frequency and duration of ON/OFF periods by selecting arrival and 

departure times according to various statistical distributions. Here, we use one of two 

distributions. Most empirical measurements on the Internet observe a heavy-tailed distribution of 

transferred file sizes [8]. Some researchers believe long-range dependence arises in the Internet 

from the high user variability represented by such heavy-tailed distributions [11]. To investigate 

this belief, we need a distribution to represent such user behavior, and another distribution to 

represent lower user variability. In this latter case, we represent wake and sleep period durations 

as an exponential process with parameters λon and λoff. 
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To model high user variability, we represent the wake and sleep period durations using the 

Pareto distribution, which is frequently used to model the heavy-tailed characteristic of Internet 

file transfers. The Pareto distribution function has the following form: P [X ≤ x] = 1 – (k /x)α,   k ≤ 

x, where 0 < α < 2 is the shape parameter. Here, we use α = 1.2. The mean is given by 

α k/( α − 1). In this paper, we sometimes mix the Pareto and exponential distributions, using a 

Pareto “ON” period, and an exponential “OFF” with λoff. To keep the same average “ON” 

duration for both distributions, we let k = ( α − 1)λon /α. 

Congestion Control Algorithms. To achieve traffic dynamics across all timescales, our model 

implements a parallel system at the packet level, where packets transit along connections between 

source-destination pairs. Each connection operates full duplex under one of two traffic-control 

regimes: TCP and TCP friendly rate control (TFRC) [12]. 

Modern TCP implementations contain four intertwined algorithms: slow start, congestion 

avoidance, fast retransmit, and fast recovery. Variants of TCP include Tahoe, Reno, NewReno, 

and SACK TCP; the last three differ only in their response when multiple packets are dropped 

from a widow of data [13]. In this paper, we model Reno TCP, except that our model reduces the 

congestion window to half the current window size after receiving one, instead of three, duplicate 

ACKs for the same packet. While packets can be lost in our model, all packets on a connection 

take the same route, so no packet reordering occurs. 

TFRC, relative to TCP, has a more smoothly varying transmission rate. The corresponding 

cost is a slower response to transient changes in congestion or to sudden increases in available 

bandwidth [14]. TFRC uses a receiver-driven mechanism, where the receiver calculates 

congestion-control information—i.e., the loss rate—and feeds back to the sender. The sender also 

uses these feedback messages to measure the round-trip time (RTT). The sender inputs the loss 

rate and RTT into a throughput equation, which yields an acceptable transmission rate. Then, the 
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sender in our model adjusts its interval between packet transmissions to match the acceptable 

rate. 

Whether used in TCP or TFRC, each packet in our model carries several pieces of 

information: source address (router and host), destination address (router and host), creation time, 

and sequence number. In addition, the sender and receiver on each connection maintain state 

information, and exchange information via packets. In particular, for TCP the receiver maintains 

the expected sequence number to identify if a packet is lost, and to inform the sender when a 

packet drop occurs. For TFRC, the receiver maintains estimates of the loss rate and the packets-

received rate, and records the timestamp of the last packet received. The receiver periodically 

sends this information, along with an estimated RTT, to the sender. 

Routing. Each source-destination pair has a constant, shortest path. Instead of maintaining a 

forwarding table for each router, we compute a routing for each packet. To select the proper next-

hop for a packet, the forwarding router computes the distance from each of its four neighboring 

routers to the packet’s destination router. Given the regular grid topology of our model, distance 

calculations can be performed easily. Following Fuks [15], we use a metric defined for models 

with a periodic boundary condition to determine the distance between routers. Where multiple 

neighboring routers prove equidistant from the destination (at most two choices in our model), we 

consistently choose the left direction, which provides a constant path for all packets on a 

connection. Our routing technique leads to a constant, shortest path for each source-destination 

pair in one direction, and a complementary shortest path for the reverse direction. 

B. Analysis Technique. Characterizing network traffic requires knowledge about the 

statistical properties of packet arrivals over various timescales. Empirical network traffic exhibits 

LRD at large timescales, as manifested by slowly decaying autocorrelations. LRD is one of 

several equivalent ways to describe second-order self-similarity [11], but we focus on a more 

general concept: correlation structure of network traffic. 
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Correlation structure can be observed through the autocorrelation function, or its Fourier 

transform—i.e., the power spectral density. As indicated by Figueiredo and colleagues [16], the 

periodogram method exhibits possible pitfalls. On the other hand, a wavelet-based technique [10], 

which is frequently used to analyze long-range dependent data and to estimate the associated 

Hurst parameter, provides a natural and effective tool to reveal the correlation structure of 

network traffic across a wide range of timescales. Because the wavelet transform divides data into 

different frequency components and analyzes each component with a resolution matched to its 

scale, the coefficients of wavelet decomposition can be used directly to study the scale (or 

frequency) dependent properties of data. The discrete wavelet transform represents a time series X 

of size N at a scaling level j by a set of wavelet coefficients dX (j, k), k = 1, 2, …, Nj, where Nj = 2– 

j N. The coefficient |dX (j, k)|2 measures the amount of energy in X about the time 2jk and about the 

frequency 2– jf0, where f0 is determined by the sampling rate of the time series and the choice of 

the analyzing wavelet. Average energy at scale j (where scale j is referred to as an octave) is the 

average of the sum of the squared wavelet coefficients |dX (j, k)|2; i.e., Ej = ∑
k

X
j

kjd
N

2),(1
.   

As indicated by Figueiredo and colleagues [16], Ej is really an estimate of the power spectral 

density about the frequency 2– jf0. We can plot log2 Ej as a function of scale j, from finest to 

coarsest scales, and investigate the structure in the energy scale plot1. 

 

III. Experiments and Simulation Results 

Other researchers [8, 9, 16-18] have investigated some aspects of user and network behavior that 

contribute to different characteristics in the dynamics of network traffic. We attempt to verify 

some of the existing results, and we study effects of traffic sources, transport mechanisms, and 

network structure. 

                                                 
1 Matlab code for the wavelet method is available from http://www.emulab.ee.mu.oz.au/~darryl/. 
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A. Effects of the Application Layer. Using an 

abstract ON/OFF model to mimic user behavior (a 

property of the application level), we consider the 

effect of three parameters: mean values of ON/OFF 

durations (λon and λoff), and, when using the Pareto 

distribution for the “ON” period, the shape 

parameter α . We first investigate the following 

network configuration: network size L = 3, number 

of sources ns = 10, and link capacity nl = 5. We use 

TCP as the transport level. The application level 

comprises exponentially distributed ON/OFF 

periods with λon = 200 and λoff = 2000. 

Starting with a random initial condition, after 

discarding a transient period of 104 time-steps, we 

analyze the traffic on one link between routers in 

one direction. We plot the resulting correlation 

structure as yj = log2 Ej vs. j (the top plot in Figure 

3). In this paper, we record enough data to yield an 

energy scale plot that spans 20 octaves. Note that the 

finest scale description of traffic dynamics depends 

on the selection of nl. We focus solely on the large 

timescale features, checking for a more or less linear 

relationship. 

In the top plot of Figure 3, we observe a strong 

correlation structure that spans around 5 octaves. The curve departs from linearity at the medium-

TCP 
λon = 200 

TCP 
λon = 50 

TCP 
λon = 500 

Figure 3: Energy scale plots for L 
= 3, ns = 10, nl = 5, TCP in 
transport level, the exponential 
distribution ON/OFF with λon = 
200 (top), 50 (middle), 500 
(bottom), and λoff = 2000 
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to-small time scale (j < 6), and becomes flat after j > 11. The linear part of the curve implies that 

the autocorrelation function decays according to a power law within a limited range of time 

scales. The flat part of the curve indicates that the autocorrelation function decays exponentially. 

Obviously the correlation structure is not 

consistent with LRD. Note, however, that the 

correlation structure is consistent with similar 

results reported by Figueiredo and colleagues [16, 

17]. 

To investigate interaction between network 

congestion and offered traffic, absent high user 

variability, we keep all parameters fixed except for 

λon, where we use 50 and 500, shown in the 

middle and bottom, respectively, energy-scale 

plots of Figure 3. We can see that changing λon 

alters the correlation structure. Specifically, as λon 

increases, the low-frequency energy (right portion 

of the energy-scale plot) tends to increase, and the 

linear part extends over a wider range of time 

scales. A similar effect also appears when 

changing λoff. 

To consider the effect of high user variability, 

we keep the same network configuration except for the “ON” period, where we use the Pareto 

distribution (λon = 200, α  = 1.2, and λoff = 2000). The top plot in Figure 4 gives the 

corresponding energy-scale plot, which verifies previous results [8, 9, 17, 18] that heavy-tailed 

file sizes lead to LRD over large time scales. Varying λon and λoff, we find this characteristic is 

TCP 
Pareto “ON” 
Exponential “OFF” 

TCP 
Pareto “OFF” 
Exponential “ON” 

Figure 4: Energy scale plots for L = 3, 
ns = 10, nl = 5, λon = 200, and λoff = 
2000, TCP in transport level, and the 
Pareto distribution “ON” (α  = 1.2) 
with the exponential “OFF” (top), or 
the Pareto distribution “OFF” (α  = 
1.2) with the exponential “ON” 
(bottom)
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robust. However, we cannot find this characteristic if we use a Pareto distribution to model 

heavy-tailed idle time. For example, keeping the same parameters, except using exponential 

“ON” and Pareto “OFF” (λon = 200, and λoff = 

2000, α  = 1.2,), the energy-scale plot in the 

bottom of Figure 4 exhibits a flattening 

structure at low frequencies. 

In summary, high variability in file sizes 

can result in a strong correlation structure over 

a wide range of timescales, while low 

variability yields correlation over a more 

limited range. The correlation structures arise 

from many connections interacting under 

dynamic conditions, which can be shaped by 

offered load. Others [16] have suggested that 

two mechanisms inside TCP—exponential 

timeout back-off and congestion avoidance—

contribute to the correlation structure. Will the 

same correlation structure arise when 

transporting data using a congestion-control 

mechanism without one or both of these TCP 

mechanisms? We investigate this question 

next. 

B. Effects of the Transport Layer. We set up the network configuration with the same 

parameters used to obtain the top plot in Figure 3, except that TFRC replaces TCP. The energy 

scale plot appears as the top graph in Figure 5. We find that the correlation structure at small time 

TFRC 
Exponential “ON”

TFRC 
Pareto “ON” 

Figure 5: Energy scale plots for L 
= 3, ns = 10, nl = 5, λon = 200, and 
λoff = 2000, TFRC in transport 
level, and the exponential 
distribution ON/OFF (top), or the 
Pareto distribution “ON” (α  = 1.2) 
with the exponential “OFF” 
(bottom) 
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scales differs from the case of TCP (top plot in Figure 3). However, similar to TCP, a strong 

correlation structure spans a limited range of octaves (j = 6 to 12). We also observed (not shown 

here) that offered traffic has similar effects on the correlation structure, whether using TCP or 

TFRC. So it seems that the limited strong correlation structure does not rely on particular 

transport mechanisms. Congestion feedback algorithms, other than those used in TCP, may also 

yield a limited strong correlation structure as a result of interactions among many connections. 

What about the effects of high user variability? Will heavy-tailed file sizes lead to LRD under 

TFRC? Other researchers [9, 19] believe that, under TCP or flow-controlled UDP, LRD of 

aggregate traffic will appear as long as connection durations or object sizes being transported are 

heavy-tailed. In other words, they believe that LRD in aggregate traffic is insensitive to details in 

the protocol stack or the network configuration. Despite such beliefs, we have not found any 

research that investigates this question using any transport protocol other than TCP or an open-

loop flow-controlled unreliable transport protocol, used by Park and colleagues [19]. We 

investigate the question with TFRC. 

Keeping the same network configuration (see Figure 5), we substitute the Pareto distribution 

“ON” (λon = 200, α  = 1.2, and λoff = 2000) in place of exponential “ON”. From the correlation 

structure in the corresponding energy-scale plot, which appears as the bottom graph in Figure 5, 

heavy-tailed file sizes appear to give rise to LRD over large time scales under TFRC. 

In the next experiment, we change only one parameter, reducing the link capacity to nl = 2. 

The corresponding energy scale plot (top graph in Figure 6) does not exhibit the expected 

correlation structure. For TFRC, shrinking link capacity destroys the LRD structure induced by 

heavy-tailed file-size distributions. In contrast, when substituting TCP for TFRC (bottom plot in 

Figure 6), retaining all other parameter settings including the reduced link capacity, we find, as 

indicated elsewhere [9], that TCP maintains the LRD structure introduced by heavy-tailed file 

sizes. This suggests that LRD of aggregate traffic might not be insensitive to details in the 



 15 

protocol stack or network configuration, which motivates us to explore the effects of network 

structure.  

C. Effect of Network Structure: Relative Bandwidth. We study the effect of the network 

structure on traffic dynamics by modulating three 

parameters: number of sources (ns), link capacity 

(nl), and network size (L). We first identify how 

shrinking or expanding link capacity influences 

the correlation structure. We set L = 3, ns = 10, and 

nl = 2 or 20; we use TCP or TFRC as the transport 

level; we use exponential ON/OFF (λon = 200 and 

λoff = 2000) in the application level. Figure 7 

provides the energy-scale plots from the 

simulation results. 

The top row of plots in Figure 7 depict 

correlation structures when nl = 2 with either TCP 

(left) or TFRC (right) used as the transport layer. 

The bottom row of plots shows correlation 

structures arising when nl = 20 with a transport 

layer of either TCP (left) or TFRC (right). Recall 

that, since the basic simulation time step is 

constant, the finest description of traffic dynamics 

relies on the selection of nl. The effects of this fact can be observed in Figure 7, where the bottom 

row of plots gives a coarser description for the finest time scale than do the top row of plots. 

Examining the correlation structure at large time scales, we find that changing link capacity 

(nl) alters the correlation structure. Reducing link capacity tends to strengthen the correlation 

TFRC 
Pareto “ON” 
nl = 2 

TCP 
Pareto “ON” 
nl = 2 

Figure 6: Energy scale plots for L = 
3, ns = 10, nl = 2, λon = 200, and λoff = 
2000, the Pareto distribution “ON” 
(α  = 1.2) with the exponential 
“OFF”, and TFRC (top), or TCP 
(bottom) in transport level 
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structure, while expanding link capacity loosens the degree of dependence in the traffic. A similar 

effect appears through changing ns. 

Retaining the same network configuration, we set ns = 40, and nl = 5. In Figure 8, we show 

the corresponding energy-scale plots for TCP (top left) and TFRC (top right). Comparing against 

the top plot in Figure 3 (TCP with nl = 5) and the top plot in Figure 5 (TFRC with nl = 5), we find 

that increasing ns tends to strengthen the correlation structure. The effect is similar to effects from 

regulating link capacity and varying λon/λoff. To understand this relationship, we also show, in the 

bottom of Figure 8, two additional energy-scale plots: one for TCP (bottom left) and one for 

TFRC (bottom right). The parameters for these plots correspond to the same parameters used in 

TCP 
ns = 10 
nl = 2 

TCP 
ns = 10 
nl = 20 

TFRC 
ns = 10 
nl = 2 

TFRC 
ns = 10 
nl = 20 

Figure 7: Energy scale plots for L = 3, ns = 10, nl = 2 (top), or 20 (bottom), 
the exponential distribution ON/OFF with λon = 200 and λoff = 2000, and TCP 
(left) or TRFC (right) in transport level. 



 17 

TCP 
ns = 40 
nl = 5 

TFRC 
ns = 40 
nl = 5 

TCP 
ns = 40 
nl = 20 

TFRC 
ns = 40 
nl = 20 

Figure 8: Energy scale plots for L = 3, ns = 40, nl = 5 (top), or 20 (bottom), the 
exponential distribution ON/OFF with λon = 200 and λoff = 2000, and the TCP 
(left) or the TRFC (right) in transport level

the top row of plots in Figure 8, except that we increase the link capacity from nl = 5 to nl = 20. 

With the increased link capacity, the correlation structures in each plot seem to return to their 

original shapes, as depicted in the top plots in Figure 3 (for TCP) and Figure 5 (for TFRC). 

Offered traffic (represented by λon, λoff, and ns) and shared network capacity combine to act as 

traffic-shapers, strengthening and loosening correlation structure, which can be offset by 

congestion-control mechanisms.  This view might help to explain why TCP, and its variants, are 

prone to instabilities when combined with increases in network capacity [20]. For network-

adaptive distributed systems, an increased correlation structure might provide more stable traffic 

patterns that permit network measurements, and subsequent behavioral adjustments, to occur less 
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frequently. However, in case of correlation degradation, network-adaptive systems may have to 

vary measurement pace to match the more rapid fluctuation. 

On the other hand, more surprising interactions might exist in a large-scale network, where 

the utilization of network capacity could be more influenced by spatial relationships. We 

investigate this next. 

D. Effect of Network Structure: Network Size. A key property of the Internet is its large scale. 

In July 1998, as reported by Cowie and colleagues [21], the Internet comprised a collection of 

about 4,000 interconnected routing domains (or autonomous systems). Does network size play a 

significant role in defining the correlation structure of network traffic? 

Even if our model has the potential to answer this question, absent a high-speed parallel 

computer system, we may still spend a very long time to simulate a network with larger size, 

capacity, and number of hosts, and to collect sufficient data for wavelet-based analysis. To 

surmount this obstacle, we chose to investigate a situation where network sources can congest the 

network backbone, though this is counter to the conventional case where network congestion 

appears more frequently on network access links. Since our investigation considers comparative 

rather than absolute results, our limiting assumptions might lead to an informative outcome while 

reducing computational requirements. We set up our experiments using the following parameters: 

ns = 5, nl = 1, and L = 3, 9, and 27; TCP or TFRC in transport level; exponential distribution 

ON/OFF with λon = 200 and λoff = 2000 in application level. The energy-scale plots appear in 

Figure 9 for TCP (left column) and TFRC (right column), with network size increasing from top 

(L = 3) to bottom (L = 27). These plots show that as the network size increases, the flat portion of 

the curve (indicating exponential decay in the autocorrelation function) diminishes little by little, 

while the linear portion seems gradually to increase in significance. So it might be reasonable to 

expect the linear part to extend over some large time scales as the network reaches Internet size, 

even without high variability in user behavior. This suggests that network size has greater 

influence than other factors on network congestion. 
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Figure 9: Energy scale plots for L = 3 (top), 9 (middle), and 27 (bottom), ns = 5, nl = 1, the 
exponential distribution ON/OFF with λon = 200 and λoff = 2000, and TCP (left) or TRFC (right) 
in transport level 
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IV. Conclusions 

By focusing our simulation model on describing comparative rather than absolute behavior, we 

conducted a systematic search, using wavelet-based analysis, to identify and understand 

significant phenomena influencing the correlation structure of network congestion. Our findings 

imply that observed traffic characteristics derive from combined effects, which might be 

overlooked as researchers search for invariants from empirical data. We also reported several new 

observations and recommendations with significant implications for traffic characterization, and 

for the design of network-adaptive distributed applications. 

First, we find that congestion-control mechanisms affect the characteristics of timescale 

dynamics in network traffic. While both TCP and TFRC can produce strong correlation over a 

limited range of timescales, their influence on the correlation structure might differ, especially at 

large timescales, where TFRC sometimes fails to maintain the LRD structure induced by high 

user variability. In effect, congestion-control mechanisms might balance offered load and 

network capacity, leading to invariants over a limited range of timescales. These invariants 

appear not to hold across all timescales. 

Second, we find that the correlation structure of traffic should be controllable by modulating 

available bandwidth. Since a network is a driven system, the correlation structure of network 

traffic arises from significant interaction between offered load and network capacity. Thus 

changes in offered traffic change the correlation structure. From the perspective of Internet traffic 

engineering, we can imagine that changing available capacity to follow the daily pattern of traffic 

could shape the correlation structure. However, from the view of network-adaptive distributed 

systems, we see the need to vary the pace of adaptation to account for more rapid fluctuation as 

correlation structure degrades. An increased correlation structure might provide distributed 

systems with more stable traffic patterns that permit network measurements, and subsequent 

behavioral adjustments, to occur less frequently. 
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Third, we find that a similar correlation structure to that seen for measured Internet traffic 

may arise in very large networks, even without high user variability. In large networks, much of 

the traffic must travel through multiple domains en route from source to destination. The 

observed correlation structure of traffic arises from the collective effect of all transit flows. 

Where concurrent connections share one link in a larger network, the longer-distance 

connections, which need more time for feedback control, must be responsible for the larger 

timescale correlation structure because connections using either TCP or TFRC can themselves 

exhibit strong correlation over a limited range of timescales. Therefore, the spatial span of 

connections appears to be a significant influence on correlation structure. Large distributed 

applications might be able to exploit this general characteristic to achieve network-wide 

adaptation. To support this insight, we conducted a further study that demonstrates an ability to 

monitor shifting network-wide patterns at some timescales [22].  

Finally, effective design of network-adaptive distributed systems should benefit from an 

understanding of network-wide traffic flow. While researchers have provided an understanding of 

the properties of various quality-of-service mechanisms on a local scale, the effects of such 

mechanisms have not been studied on a global scale in large networks, where cause-effect 

relationships might not be inferred readily from the behavior of individual elements. In-depth 

understanding of the spatiotemporal variance of network traffic should be viewed as an important 

research direction that could lead eventually to a solid methodology for designing network-

adaptive distributed systems. 
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